utorial 9: Errata to sup-norm method

Leon Li

 $23/3/2018$

in tuto*r*ial, I said the following "sup-norm method" of determining non - uniform convergence of sequence of functions , as follows : Proposition" Given a sequence of functions $\{f_n: I \rightarrow \mathbb{R}\}$ $T_{n\to\infty}$ $||\tau_n|| = +\infty$, then $\{\tau_n\}$ does not converge uniformly . owever, the oblue proposition is false in general: consider f_n : $R \rightarrow R$ defined by $f_n(x) = x + \frac{1}{n}$ t then $||\dot{\tau}_n|| = +\omega$ for all $n \in \mathcal{N}$, hence $\lim_{n \to \infty} ||\dot{\tau}_n|| = +\omega$ but define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x$ then $\{\uparrow_n\}$ converges uniformly to f on R , $\|f_n - f\| = \tilde{n} \to 0$ as $n \to \infty$.

The corrected version of "Sip-norm method" is as follows:
\nProposition: Given a sequence of functions
$$
f_n: I \rightarrow R
$$
;
\nif $\lim_{n\rightarrow\infty} ||f_n|| = +\infty$, and f_n converges
\npointwisely to a bound function $f: I \rightarrow I$?
\nthen f_n does not converge uniformly.
\n
\n*Proof:* Suppose $\{f_n\}$ converges uniformly, then
\nby uniqueness of limit, $\{f_n\}$ converges to f uniformly.
\n
\n $\frac{1}{11} \cdot f_1 \leq 1$
\nThus exists $N \in N$ such that 5π all $n \geq N$,
\n $\|f_n - f\| \leq 1$
\n
\nTherefore, $f_0 \sim \alpha || n \geq N$, $\forall x \in I$,
\n $\frac{1}{11} \cdot f_1 \leq 1$
\n $\therefore ||f_n|| \leq |f_n(x) - f(x)| + |f(x)| \leq ||f_n - f|| + ||f|| \leq 1 + ||f||$
\n $\therefore ||f_n|| \leq |f_n(x) - f(x)| + |f(x)| \leq ||f_n - f|| + ||f|| \leq 1 + ||f||$
\n $\therefore ||f_n|| \leq |f_n||$, $\forall n \geq N$. *contodicting* $\lim_{n\rightarrow\infty} ||f_n|| = +\infty$

2.g. Let $\mathcal{T}_n : \mathcal{R} \rightarrow \mathcal{R}$ be defined by $\mathcal{T}_n(x) = \frac{1}{n}$ t then $||t_n|| = t$ ∞ , \therefore $\lim_{n \to \infty} ||t_n|| = \infty$ Pointwise limit is clearly $f(x) \equiv 0$, and hence is bounded. I here tore, by proposition, { Th } is not uniformly convergent.