Tutorial 9: Errata to sup-norm method

Leon Li

23/3/2018

In tutorial, I said the following "sup-norm method" of determining non-uniform convergence of sequence of functions, as follows: "Proposition" Given a sequence of functions $\{f_n: I \rightarrow R\}$ if him ||f_n|| = + as, then {fn} does not converge miformly. However, the above proposition is false in general: consider fri R -> IR defined by frith) = x+ th then $||F_n|| = +\infty$ for all $n \in \mathbb{N}$, hence $\lim_{n \to \infty} ||F_n|| = +\infty$ but define $f: |R \rightarrow |R$ by f(x) = xthen {Tn} converges iniformly to I on R, as $\|f_n - f\| = \frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$.

The connected version of "sup-norm method" is as follows
Proposition Given a sequence of functions
$$\{f_n: I \rightarrow R\}$$

if $\lim_{n \rightarrow \infty} ||f_n|| = +\infty$, and f_n converges
pointwisely to a boundal function $f: I \rightarrow |R|$
then $\{f_n\}$ does not converge uniformly.
Proof: Suppose $\{f_n\}$ converges uniformly, then
by uniqueness of limit, $\{f_n\}$ converges to f uniformly.
Chuore $\mathcal{E}=1$: by Proposition 3.1,
there exists $N \in |N|$ such that for all $n \ge N$,
 $||f_n - f|| \le 1$
Therefore, for all $n \ge N$, $\forall x \in I$,
 $||f_n(k)| \le ||f_n(k) - f(k)| + ||f(k)| \le ||f_n - f(k)| = 1$
 $\therefore ||f_n|| \le ||f_1||f_1|$, $\forall n \ge N$. contradicting $\lim_{n \rightarrow \infty} ||f_n|| = +\infty$
 $-\mathbb{Z}$

e.g. Let
$$f_n : |R \to |R|$$
 be defined by $f_n(x) = f_n \times$
then $||f_n|| = +\infty$, \dots $\lim_{n \to \infty} ||f_n|| = \infty$
pointwise limit is clearly $F(x) = 0$, and hence is bounded.
Therefore, by proposition, $\{f_n\}$ is not uniformly convergent.